
1

The Distributed Virtual Windtunnel
Steve Bryson† and Michael Gerald-Yamasaki††

RNR Technical Report RNR-92-010, March 1992

Applied Research Branch, Numerical Aerodynamics Simulation Division
NASA Ames Research Center

MS T27-A
Moffett Field, Ca. 94035

bryson@nas.nasa.gov
Abstract

An implementation of a distributed virtual environment for the shared interactive visualization of large unsteady
three-dimensional flowfields is described. Computation of the visualizations are performed on a Convex C3240
computer, and the visualization data is transferred over a high-speed network to a Silicon Graphics Iris worksta-
tion for rendering. A boom-mounted six degree of freedom head-position-sensitive stereo CRT system is used for
display. A hand position sensitive glove controller is used for controlling various tracers (e.g. “smoke”) for the
visualization of the flow. User commands are sent to the Convex, which interprets these commands and computes
the corresponding visualization. With this architecture, several users may share and cooperatively control the vi-
sualization generated by the Convex. The distributed architecture is also interesting to those using conventional
screen and mouse interfaces. This work extends the work of Bryson and Creon Levit [1] in the development of a
virtual environment for the visualization of fluid flow to large data sets.

† Employee of Computer Sciences Corporation. Work supported under government contract NAS 2-12961
†† Employee of NASA

2

1: Introduction

In a previous work [1], a virtual environment for the visualization of three-dimensional unsteady fluid flows was
described. This system uses virtual environment interaction techniques, that allow fully three-dimensional display and
control of computer generated graphics, to explore the global structure of pre-computed unsteady simulated flow
fields. All control, computation and rendering in this previous work took place on a multi-processor high performance
graphics workstation. In this environment single grid unsteady data sets were studied. Due to performance require-
ments, these data sets were limited to fewer than 240 megabytes in size. Interesting unsteady data sets are, however,
considerably larger than this, often in the tens of gigabytes range. Visualization of these larger data sets using virtual
environment techniques is not practicable on current high-performance workstations. This paper describes a distrib-
uted architecture for a virtual environment system designed to visualize these larger data sets.

The distributed virtual windtunnel will be discussed in the context of the unsteady flow around a tapered cylinder
[2]. This data exhibits interesting vortical and recirculation phenomena. Each timestep consists of about on and a half
megabytes of velocity data, and 800 timsteps were computed.

In the remainder of this section, the problem of visualizing unsteady flowfields is described. Section 2 describes
the visualization techniques used in the stand-alone virtual windtunnel [1], the virtual environment system for flow
visualization implemented on a stand-alone high-performance graphics workstation. Section 3 describes the virtual
environment hardware used for control and display. Section 4 describes the distributed library [3] which is used for
the communications between the graphics workstation and the host supercomputer. Section 5 describes the design of
the distributed virtual windtunnel. Section 6 describes current performance. Further work and conclusions are de-
scribed in section 7.

1.1 Unsteady Fluid Flow Visualization

Unless otherwise noted, aflowfield, is a numerical solution to a three-dimensional computational fluid dynamics
(CFD) simulation, and in particular, the time-dependent velocity vector field part of that solution. Complicated geo-
metrical and topological situations abound in such fields. Methods of visualizing these phenomena inspired by the
visualization of real flows in real wind (or water) tunnels [5] can be used for simulated flow. Examples include smoke
injection, dye advection, and time exposure photographs.

The flowfields considered in this paper are pre-computed solutions of the time-accurate Navier-Stokes equations
of fluid motion. These unsteady flowfields are represented as a sequence of successive three-dimensional velocity vec-
tor fields. Each of these velocity vector fields is considered as a timestep.

1.2 Virtual Environments

Virtual environments [5] are a new approach to user interfaces in computer software. This approach involves in-
tegrating a variety of input and display devices to give the user the illusion of being immersed in an interactive com-
puter generated environment. The computer generated scene is displayed in stereo to create the illusion of depth, and
is rendered from a point of view that tracks the user’s head. The user also has an input device, typically an instrument-
ed glove, which enables direct manipulation of objects in the computer generated environment.

Virtual environments provide a useful interface for analyzing unsteady fluid flow phenomena which involve com-
plex three-dimensional structure. By providing the user with the illusion that the elements of the computer generated
environment are real, interactive objects, the user becomes more directly involved in the investigation of the phenom-
ena in that environment. By providing true three-dimensional control over objects in the environment, they can be
directly manipulated to perform as the user desires. By providing head-tracked stereoscopic wide field of view dis-
plays, the three-dimensional structure of virtual objects can be unambiguously perceived.

The task of providing an illusion of reality places severe demands upon the entire computer system used to gen-
erate the virtual environment. Informal studies have shown that to sustain the illusion, the system must repeatedly
react to the user's commands and display the virtual scene in stereo to the user in less than 1/8th of a second. Slower
performance destroys the illusion, removing essentially all of the advantages of virtual environments. Thus the input
of the user commands including user head position, the access to the data that is being visualized, the computation of
the visualizations on that data, and the rendering of those visualizations from the user's point of view must all occur in
less than 1/8th of a second. Faster performance is highly desirable, though a tradeoff must be made between a rich
environment and frame rate. Ten frames/second will be taken as the desired frame rate.

3

These performance demands place strong constraints on the design of a system. The flow visualization techniques
that can be used in a virtual environment are limited to those that can be computed in the time allowed. For example,
interactive streamlines of a flow computed with fast integration methods can be used, but interactive isosurfaces, which
require computationally intensive algorithms such as marching cubes, can not. The computer platform used in the vir-
tual environment system must be sufficiently powerful and respond with sufficient speed. In a distributed implemen-
tation, there must be enough network bandwidth to deliver the data moving in both directions in the time required. The
satisfaction of these constraints is the primary consideration in the design of the system described in this paper. Both
streamline calculation and flowfield data I/O must be accomplished in less than 1/8 of a second to sustain sufficient
frame rates for the virtual environment.

2: The Virtual Windtunnel

The stand-alone virtual windtunnel [1] has demonstrated that virtual environment techniques are useful in visual-
izing complex fluid flows. The stereo head-tracked display is a very effective way of displaying the complex three-
dimensional features of a fluid flow. Input via an instrumented glove is a useful and intuitive way to position the var-
ious flow visualization tools. The idea is to create the illusion that the user is actually in the flow manipulating the
visualization tools (figure 1). Unlike someone in a real flow field, however, the user's presence in no way disturbs the
flow. Thus, sensitive areas of flow, such as boundary layers and chaotic regions, can be investigated easily. The flow
can be investigated at any length scale, and with control over time. The time evolution of the flow can be sped up,
slowed down, run backwards, or stopped completely for detailed examination.

The stand-alone virtual windtunnel is based on a Silicon Graphics Iris 380GT VGX system. This is a multipro-
cessor system with eight 33 MHz MIPS R3000 processors with R3010 floating point chips. The performance of the
machine is rated at approximately 200 MIPS and 37 megaflops. Our system has 256 MBytes of memory. The VGX
has a drawing speed rating of about 800,000 triangles/second.

The display device for this system is a boom-mounted six degree of freedom head-position-sensitive stereo CRT
system. The control device is an instrumented glove which provides the position and orientation of the user's hand as
well as the degree of bend of the user's fingers. These devices are the same as those used in the distributed virtual
windtunnel, and are described in more detail in section 3.

2.1 Visualization Tools

As described in section 1, the tools considered in this paper for visualizing unsteady velocity vector fields are in-
spired by classical techniques used in real wind and water tunnels. Currently, the visualization methods, or tools, that
we have implemented are streaklines, particle paths, and streamlines.

A streakline is formally defined as the locus of infinitesimal fluid elements that have previously passed through
a given fixed point in space [4]. Streaklines are analogous to smoke or collections of bubbles (figure 1). Aparticle
path is formally defined as the locus of points occupied over time by a given single, infinitesimal fluid element [4].
This corresponds to a “time exposure photograph” of the motion of a single small particle injected into the flow. A
streamline is formally defined as the integral curve of the instantaneous velocity vector field that passes through a
given point in space at a given time [4]. They provide direct insight into the instantaneous geometry of the flowfield
(figures 2 and 3).

All of these techniques involve injecting virtual particles into the flow. We call the point of injection for a partic-
ular tool theseed pointfor that tool. Each of the techniques described above are computed by selecting a set of initial
positions and integrating the vector field to compute a final set of positions. The difference between the visualization
techniques described above is the order in which the integrations are performed. The streaklines take as input the cur-
rent positions of all the particles, including those recently added at the seed points. All of the particles are 'moved' by
integrating each one once using the data in the current time step. The particles may be rendered as individual points
or connected in a way to simulate smoke. Particle paths take as input the seed point(s) and interatively integrate the
particle position, incrementing the timestep with each integration. This results in an array of positions which is dis-
played as the particle path. Streamlines take as input the seed points and interatively integrate the particle position
without incrementing the current timestep. This results in an array of positions which is displayed as the streamline.

In the case of streamlines and particle paths, it is the paths that are of interest, not the positions of individual points
in the path. The researcher uses these tools to explore the flow field by moving the seedpoint and observing the path
from that seedpoint. Thus the virtual environment system must be capable of computing the entire path in a single
frame time. The usefulness of these tools are greatly enhanced when several paths can be computed within the required
time.

Control over the seed points for all of the above tools are provided by lines of seed points called rakes. Rakes may

4

be manipulated with the glove through finger gestures and hand motion. These rakes are grabbed at one of three points:
center for rigid translation of the rake, or at either end for movement of that end of the rake. In this way rakes may be
oriented in an arbitrary manner. Several rakes may be defined simultaneously The type and number of seedpoints in
a particular rake is determined by the user. It has been found useful to use rakes of several different types in combi-
nation when studying a flow.

The integrations described above are made more complicated by the fact that the fluid flow data are provided on
curvilinear grids, which contain the physical position of each grid point and the velocity vector at that point. If the
position of a particle is known in physical space, a search of the curvilinear grid must be performed to locate the grid
coordinates nearest that point and obtain the corresponding velocity vector data. This search involves unacceptable
performance overhead. It is avoided in the virtual windtunnel by converting the velocity data to grid coordinates and
performing all integrations in grid coordinates. The resulting paths are easily converted to physical coordinates by
using their known grid coordinates to directly lookup their corresponding physical coordinates, using trilinear interpo-
lation if necessary.

The computation of the visualization tools involves integrating particles throughout the flow field. Thus the data
of the flowfield must be quickly accessible for the integration to be performed at the speeds required. Construction of
particle paths in particular require the entire data set for all timesteps, as the particle paths may extend throughout the
entire data set. In the stand-alone virtual windtunnel the flow data is placed in physical memory so that it can be ran-
domly accessed with little time penalty. As the physical memory of our workstation contains 256 megabytes of mem-
ory, the data sets that can be examined with the stand-alone virtual windtunnel are limited to about 250 megabytes in
size. As described in section 1, this is a severe constraint and prevents us from examining many interesting flows.

3: The Virtual Environment Interface

The virtual environment interface provides a natural three-dimensional environment for both display and control
of rakes. This interface allows intuitive exploration of rich, complex geometries. It is very similar to the interface used
in the stand-alone virtual windtunnel [1]. The basic components of the environment are a high-performance graphics
workstation for computation and rendering, a BOOM for display, and a VPL Dataglove for control (figure 4).

Figure 4: The hardware configuration of the virtual windtunnel system.

The display for our virtual environment is the BOOM, manufactured by Fake Space Labs of Menlo Park CA., and
fashioned after the prototype developed earlier by Sterling Software, Inc. at the VIEW lab at NASA Ames Research
Center [6]. (see figure 5).

The boom is an alternative to the popular head-mounted LCD display systems that were pioneered at the VIEW
lab [5] and are now widely used. The main advantage of the boom is that real CRTs can be used for display which
provides much better brightness, contrast, and resolution than standard liquid crystal displays. Two monochromatic
RS170 CRTs are provided, one for each eye, so that the computer generated scene may be viewed in stereo. The CRTs
are viewed through wide field optics provided by LEEP Optics, so the computer generated image fills the user's field
of view. The weight of the CRTs are borne by a counterweighted yoke assembly with six joints, which are designed

5

to allow easy movement of the head with six degrees of freedom within a limited range. Optical encoders on the joints
of the yoke assembly are continuously read by the host computer providing six angles of the joints of the yoke. These
angles are converted into a standard 4x4 position and orientation matrix for the position and orientation of the BOOM
head by six successive translations and rotations. By inverting this position and orientation matrix and concatenating
it with the graphics transformation matrix stack, the computer generated scene is rendered from the user's point of
view. As the user moves, that point of view changes in real-time, providing a strong illusion that the user is viewing
an actual three-dimensional environment.

For user control in our virtual environment, the user's hand position, orientation, and finger joint angles are sensed
using a VPL dataglove™ model II, which incorporates a Polhemus 3Space™ tracker. The Polhemus tracker gives the
absolute position and orientation of the glove relative to a source by sensing multiplexed orthogonal electromagnetic
fields. The degree of bend of knuckle and middle joints of the fingers and thumb of the user's hand are measured by
the VPL Dataglove™ model II using specially treated optical fibers. These finger joint angles are combined and in-
terpreted as gestures. The glove requires recalibration for each user, and the polhemus tracker has limited accuracy
and is sensitive to the ambient electromagnetic environment. The dataglove works satisfactorily with user training and
within a limited range.

The keyboard and mouse are also used as input devices to the virtual environment. The user can easily swing the
boom away and interact with the computer in the usual way.

The local computation and rendering for our virtual environment is provided by the same Silicon Graphics Iris
described in section 2.

Stereo display on the boom is handled by rendering the left eye image using only shades of pure red (of which 256
are available) and the right eye image using only shades of pure blue. When the blue (second, right-eye) image is
drawn, it is drawn using a “writemask” that protects the bits of the red image. The Z-buffer bit planes are cleared be-
tween the drawing of the left- and right-eye images, but the color (red) bit planes are not cleared. Thus, the end result
is separately Z-buffered left- and right-eye images, in red and blue respectively, on the screen at the same time with
the appropriate mixture of red and blue where the images overlap.

The 1024x1280 pixel RGB video output of the VGX is converted into RS170 component video in real time using
a scan converter. The red RS170 component is fed into the left eye of the boom, and the blue RS170 component into
the right eye. The sync is fed to both eyes. Since the boom CRTs are monochrome, we see correctly matched (stereo)
images.

4: Distributed Library

The main vehicle for distributing computation between supercomputers and workstations in the distributed virtual
windtunnel is Distributed Library (dlib) [3]. The workstation acts as a client and the supercomputer acts as the server.
Like many systems which provide for distributed processing, dlib is a high level interface to network services based
on the remote procedure call (RPC) model [7][8][9][10]. However, unlike most of these systems, dlib was developed
to provide a service which allows for a conversation of arbitrary length within a single context between client and serv-
er. The dlib server process is designed to be capable of storing state information which persists from call to call, as
well as allocating memory for data storage and manipulation. While RPC protocols are frequently likened to local
procedure calls without side effects, dlib more closely resembles the extension of the process environment to include
the server process.

The use of dlib is much like developing a library of routines, say, an I/O library, on a local system. Application
code is linked to routines in an I/O library. The I/O library contains simple routines which give access to the I/O de-
vices controlled by the operating system device drivers (figure 6). The I/O device drivers in turn control the somewhat
more complicated exchange of data with external devices.

6

Figure 6: Access to local I/O devices using local I/O Library in, e. g., the stand-alone virtual wind-
tunnel.

To execute a routine on a remote host, all the information necessary to execute the routine in the remote environ-
ment must be transmitted over the network to a remote server process. After execution of the routine is invoked, results
of the execution must also be transmitted back to the local client process. Dlib provides utilities to automatically create
the code which performs the network transactions required to invoke and execute the routine in the remote environ-
ment and exchange information between the client and server processes.

Due to the persistent nature of the remote environment, dlib is able to coordinate allocation and use of remote
memory segments and provide access to remote system utilities. The application, through dlib, can "link" to the remote
system's I/O library, for example, to utilize the remote system's I/O devices. (figure 7). The illustrated client process
can utilize the monitor and mouse via the local I/O library and operating system. The client process can also utilize
the remote disk via dlib which communicates to a remote server process. The remote server process has access to the
remote disk via the remote I/O library.

7

Figure 7: Access to remote I/O devices using dlib and remote I/O Library in the distributed virtual
windtunnel. The solid lines represent actual data paths, while the stippled line is the effective data
path from the client processes to the remote disk.

The distributed virtual windtunnel uses dlib to allow the workstation clients to gain access to the supercomputer's
processing power, large memory, large disk storage capacity, and fast disk access.

Dlib was originally designed on a model of one client to one server. To allow multiple clients to share the server
process environment, the dlib server was modified to accept more than one connection. Each connection is selected
for service by the server process in the sequence that the dlib calls are received. The dlib calls are executed by the
server in a single process environment as though there were only one client.

5: Implementation of the Distributed Virtual Windtunnel

5.1 Design Considerations

The performance constraints discussed in section 1 determine many aspects of a distributed virtual windtunnel
implementation. In choosing a remote computer system, computational speed, accessibility, disk bandwidth, and com-
patibility with the stand-alone system must all be considered. Further design choices are motivated by available high-
speed networks and the local workstations. What information is sent across networks is designed so that several work-
stations and virtual environment systems can access the same data on the host system. The format of the information
is driven by the demand that as little data is transferred over the networks as possible. Finally the software architecture

8

should be designed so that the individual computer systems perform the tasks that they are best suited for, and there
are as few bottlenecks as possible.

The choice of the Convex C3240 system is motivated by several considerations. The primary consideration is the
availability of this system, which is dedicated to visualization of large data sets in the NAS project at NASA Ames.
While the NAS project also has two Cray supercomputers, they are heavily used, so interactive response time cannot
be guaranteed. Dedicated time on the Convex C3240 has been made available for this project. The Convex C3240
has four vector processors. These processors can process vector arrays of up to 128 entries in length. The high per-
formance of the Convex relies on the vectorization of code, which will be discussed in section 5.3. Our Convex has
one gigabyte of physical memory and 100 gigabytes of disk storage. The disk bandwidth has been measured to be
between 30 and 50 megabytes/second sustained rate, depending on the size of the file being read.

Two workstations are used for the local computation and rendering of the visualizations. This allows the imple-
mentation of a shared virtual windtunnel. The workstations are the Silicon Graphics (SGI) Iris 380GT VGX worksta-
tion described above and the Silicon Graphics Iris 440GT Skywriter. The skywriter has four 40 MHz MIPS R3000
CPUs with R3010 floating point chips and two independent VGXT graphics rendering pipelines. The Skywriter is
used to render the virtual environment to the two-color channel BOOM IIC. These workstations have been chosen
because they are available and used in stand-alone virtual windtunnel development. For our current implementation
of the distributed virtual windtunnel, a workstation with two processors and a high-performance graphics pipeline
would suffice.

The UltraNet high-speed network was chosen for the communication between the workstations and the remote
system. This network is rated at 100 megabytes/second, but the UltraNet VME interface to the SGI workstation limits
the bandwidth to 13 megabytes/second. This rate should be sufficient for most visualizations. As of this writing, the
actual network performance is only 1 megabyte/second due to software bugs and the lack of a HIPPI interface for the
Convex. Both of these problems are being addressed and we fully expect 13 megabytes/second soon.

The specification of the data that is returned by the remote system is determined by the requirements of minimal
data transfer and that each computer do what it does best. The remote system computes the visualization tools as de-
scribed in section 2, and sends the resulting paths out the network as arrays of floating point vectors in three dimen-
sions. The workstation receives these arrays and renders them from the point of view determined by that workstation's
virtual environment interface. This requires the transfer of 12 bytes per point in each array. Experience has shown
that typical visualization scenarios involve tens of thousands of particles implying the transfer of several hundred thou-
sand bytes of data per timestep. One might consider projecting these vectors to compute their screen coordinates on
the remote system and sending this data to the workstation. This would reduce the transfer to eight bytes/point. In the
virtual environment scenario, however, stereoscopic display requires two projections per point which implies 16 bytes/
point. Thus sending the three-dimensional position of the points with 12 bytes/point in the arrays is optimal. The net-
work transfer rates required for an update rate of ten frames/second neglecting processing and rendering overhead are
summarized in table 1.

Table 1: Network constraints

In the specification of what information is sent to the remote system, the desire for a shared environment capability
was the primary consideration. Ideally, at any time during the use of the distributed virtual windtunnel another work-
station with a virtual environment interface should be able to "sign up" and interact with the already existing virtual
environment. This requires that control over all objects in the virtual environment take place on the remote system.
Thus the information that is sent to the remote system are those user commands which effect the virtual environment.
These include hand position, hand gestures, keyboard and mouse commands, and any other control data that may be
implemented. In the shared scenario, the position of the users' heads would also be sent so that they may be displayed
as part of the virtual environment, indicating to participants in the environment where everyone is.

In this design, the information about the virtual control devices such as rakes must also be sent from the remote
system to the workstation so that the current state of these devices may be correctly rendered. This adds a small over-
head to the transfer of the visualization data described above, but this is typically minor compared to the visualization
data itself.

Because the computation of the environment state is performed by a single machine, possible conflicting com-

of particles # of bytes transferred Required bandwidth for 10 fps
(Mbytes/sec)

10,000 120,000 1.144

50,000 600,000 5.722

100,000 1,200,000 9.537

9

mands from different workstations are easily handled. As described in section 4, the dlib process on the remote system
that handles the network traffic takes the input from various workstations in serial order. This allows conflicts to be
resolved by a 'first come first served' rule. For example, if two users grab the same rake, the user who grabbed it first
gets control of that rake and the second user is locked out of interaction with that rake until the first user lets the rake
go. Other rakes are unaffected by this locking, so the second user can interact with them. Other control conflicts can
be similarly resolved.

The problem of large data sets can be handled in a variety of ways. With one gigabyte of physical memory, data
sets can be loaded into memory that are four times as large as in the stand-alone virtual windtunnel case. This allows
for the visualization of interesting data sets not available to the stand-alone virtual windtunnel. Having the entire data
set resident in memory is the easiest method of managing the data. When the data sets are larger than physical memory,
however, the data must reside on a mass storage device, usually disk. The Convex C3240 with its disk I/O bandwidth
of 30 megabytes/second can load datasets of up to about three and a quarter megabytes in 1/8th of a second. Thus
datasets of whose timesteps are this size are limited only by the disk storage space. There are many interesting data
sets which are still larger than this, however. An example is the hovering Harrier data set computed at NASA Ames,
whose flow velocity data has about 36 megabytes per timestep. Visualization of this data set will require a disk band-
width of about 600 megabytes per second. Thus we are still a long way from interactively visualizing very large un-
steady data sets in a virtual environment. The disk bandwidth bottlenecks for an update rate of ten frames/sec are
summarized for velocity grids in Figure 2:

Table 2: Disk bandwidth constraints

Loading timesteps from disk as described in the previous paragraph precludes the computation of particle paths
of arbitrary length in real time, as they require a different timestep for every point in the path. All the timesteps re-
quired for the computation of a particle path must be resident in memory. Thus the number of timesteps that can fit in
physical memory places a limit on the length of the particles paths. The timestep that would be loaded into memory
in this case would be the current timestep plus the maximum particle path length.

A final consideration is the desire that the development of the stand-alone and distributed virtual windtunnels be
as close as possible. In this way development of the visualization tools and environment can occur on both systems in
parallel. In the current implementation both the distributed and stand-alone versions are compiled from the same
source code using DEFINE statements where differences in architecture occur. This is possible because of the com-
patibility of the Convex C3240 and SGI internal achitectures, specifically the sharing of the IEEE floating point num-
ber format (a compile time option on the Convex).

5.2 System Architecture

In the design motivated by the above considerations, each workstation reads its input devices and sends their com-
mands to the remote system. The remote system updates the virtual environment including if necessary loading the
data for the current timestep, computes the current visualizations, and transfers the environment state back to the work-
stations. Each workstation renders this state to its virtual environment display device. Many of these tasks can be
performed in parallel.

On the remote system, computation of the visualizations can occur while the data from the previous computation
is sent to the network (figure 8). If the timesteps are being loaded from disk, that loading can also occur in parallel.
The timestep required for the next computation is loaded into a buffer. This parallelization will impact the time re-
quired for the computation so a careful study must be performed to determine the optimal balance of tasks.

of points in grid # of bytes in a timestep # of timesteps that fit in
a gigabyte

required disk band-
width

(Mbytes/sec)

131,072 (tapered cyl.) 1,572,864 682 15

436,906 (current max) 5,242,880 204 50

1,000,000 12,000,000 89 114.4

3,000,000 36,000,000 29 343.32

10,000,000 360,000,000 2 (actually 2.9) 3,433.2

10

Figure 8: The software architecture of the remote system. The data flow on the left side of the figure is over
the Ultra network. The interprocess communication is via shared memory. The rightmost process is present
only when the data set is not stored in physical memory.

On the workstation, at least two processors are desirable so the rendering of the graphics and the handling of the
network traffic can be run in parallel (figure 9). In this way the graphics performance is not tied to the network and
remote computation performance, so the head-tracked display of the virtual environment can run at very high rates.
Note that even though the head-tracked display is updating at very high rates, the entire computation cycle is still re-
quired to take place in less than 1/8th of a second due to the user interaction with the visualization tools.

11

Figure 9: The software architecture of the workstation. The data flow on the left side of the figure is over
the Ultra network. The interprocess communication is via shared memory.

5.3 Optimization

To take advantage of the computational power of the Convex, considerable code optimization is required. The
main body of the computational code must be vectorized so that the full power of the vector registers can be used. The
integration algorithm for the computation is second-order Runge-Kutta, which requires two accesses of the vector field
data from memory each involving eight floating point loads to set up for trilinear interpolation, two trilinear interpo-
lations, and two simple computations per component per point integrated. To convert the current point's location from
grid coordinates to physical coordinates, another 8 floating point loads plus a trilinear interpolation are required per
component per point.

A conflict arises between optimization for fast non-vectorized (scalar) execution and optimization for vectorized
execution. Our system is developed in C. The use of pointers and striding techniques which produce optimized scalar
C code prevents the vectorization of that code. The use of standard C arrays allows vectorization but the code is some-
what less optimal. When vectorization actually occurs, the tradeoff is clearly in favor of vectorization.

To evaluate the computational performance, a benchmark computation of 100 streamlines each containing 200
points was performed. This scenario contains 20,000 points with a transfer over the networks of 240,000 bytes of data.
The code as originally written for the stand-alone virtual windtunnel uses optimized scalar C techniques such as pointer
manipulation and striding. This code successfully parallelizes across the four processors of the Convex 440 by dis-
tributing the streamlines among the processors. In this case the benchmark computation can be performed in about
0.24 seconds. This is slower than the performance of the stand-alone virtual windtunnel distributing the streamlines
across 8 processors, which performed the same computation in 0.13 to 0.14 seconds.

An attempt was made to vectorize the computation over the streamlines. This is the only possibility, as the com-
putation of an individual streamline is an iterative process. Each component of each point in the streamline is handled
in parallel by different processors. Thus three processors are used in this vectorized computation. Vectorized in this
way the benchmark computation can be performed in about 0.19 seconds. This lack of performance can be understood
in terms of the many memory accesses that are performed in each computation as discussed above. This in combina-
tion with the effective loss of one processor explains the poor performance of the vectorized code compared to the non-
vectorized but parallelized code.

The further optimization of the computation is under study. One optimization is to parallelize across groups of
streamlines and vectorize across streamlines in a group. Generally, the speed of the computation places a limit on par-
ticle number. Examples of this constraint for various performance parameters are shown in table 3 for a frame rate of
ten frames/second, assuming that the performance scales with the number of particles:

12

Table 3: Computational performance constraints.

Comparison with the previous table shows that once the UltraNet is performing as expected, computation time on
the remote machine will be the primary constraint on the number of particles that can be used for visualization.

6: Conclusions

This paper describes an initial implementation of an interactive distributed virtual environment. This implemen-
tation has been successful in several ways. The feasibility of real-time virtual environment interaction over a high-
speed network involving transfers of hundreds of kilobytes of data has been demonstrated. Using the large memory
of remote supercomputers, larger data sets have been visualized in a virtual environment than has been previously pos-
sible. An architecture which supports data sets read dynamically from disk and multiple virtual environment users has
been designed. These successes suggest that distributed computation should be persued for the visualization of very
large unsteady data sets. It is possible that with more work the computational power of the Convex C3240 will provide
much higher performance virtual environments.

The most significant constraint on the number of particles that can be used for visualization is the computation
time. Replacing the Convex C3240 with a higher performance supercomputer such as a Cray Research Inc. system
will perhaps relax this constraint.

Further work includes the extension of the computational algorithms to handle multiple grid data sets, optimiza-
tion of the disk access for data sets that are stored on disk, optimization of the shared environment interactions, and
development of greater user control over the virtual environment. Finally, the usefulness of virtual environments in
the visualization of fluid flow must be formally studied.

While the Convex cannot provide the disk bandwidth required for very large data sets, the methods developed in
this project will extend to those machines in the future which can provide the required performance. These methods
are useful in contexts other than virtual environments, such as the visualization of unsteady flows in the conventional
screen and mouse environment.

6: Acknowledgements

Much thanks and credit goes to Creon Levit for fruitful design discussions and planting many of the seeds that
lead to this paper. Thanks also to Tom Woodrow and David Lane for assisting with the distribution to the Convex.
Tom Lasinski is appreciated for his leadership and support of this project. Thanks to Jeff Hultquist and Tom Lasinski
for helpful suggestions on early versions of this paper. Finally, thanks to the NAS division at NASA Ames for general
support of this work.

References

[4] S. Bryson and C. Levit, "The Virtual Windtunnel: An Environment for the Exploration of Three-Dimensional Un-
steady Fluid Flows",Proceedings of IEEE Visualization '91, San Diego, Ca. 1991, to appear inComputer Graph-
ics and Applications July 1992

[2] D. Jespersen and C. Levit, “Numerical Simulation of Flow Past a Tapered Cylinder”, paper AIAA-91-0751,
American Institute of Aeronautics 29th Annual Aerospace Sciences Meeting, Reno (1991).

Benchmark performance maximum # of particles # of streamlines w/ 200 particles

0.25 seconds 8,000 40

0.19 seconds (current) 10,526 52

0.13 seconds (workstation) 15,384 76

0.10 seconds 20,000 100

0.05 seconds 40,000 200

13

[3] Yamasaki, M. Distributed library. NAS Applied Research Technical Report RNR-90-008 (Apr. 1990),
NASA Ames Research Center.

[4] W.J. Yang (editor),Handbook of Flow Visualization, Hemisphere Pub., New York (1989)

[5] Fisher, S. et. al., Virtual Environment Interface Workstations,Proceedings of the Human Factors Society
32nd Annual Meeting, Anaheim, Ca. 1988

[6] I.E. McDowall, M. Bolas, S. Pieper, S.S. Fisher and J. Humphries, “Implementation and Integration of a
Couterbalanced CRT-Based Stereoscopic Display for Interactive Viewpoint Control in Virtual Environment
Application”, inProc. SPIE Conf. on Stereoscopic Displays and Applications, J. Merrit and Scott Fisher, eds.
(1990)

[7] Birrell, A. D., and Nelson, B. J. Implementing remote procedure calls. ACM Trans. on Comp. Sys. 2, 1 (Jan.
1984), 39-59.

[8] Dineen, T. H., Leach, P. J., Mishkin, N. W., Pato, J. N., and Wyatt, G. L. The network computing architecture and
system: an environment for developing distributed applications. Proceedings of Summer Usenix (June 1987), 385-
398.

[9] Sun Microsystems. Request for Comment #1057 Network Working Group (June, 1988).

[10] Xerox Corporation. Courier: the remote procedure call protocol. Xerox System Integration Standard (XSIS)
038112, (Dec. 1981).

14

Figure 1: Streaklines of the flow around the tapered cylinder rendered as smoke.

Figure 2: Streamlines of the flow around the tapered cylinder.

Figure 3: Streamlines of the flow around the tapered cylinder from the same seedpoints as in figure 2, but at a later
time.

Figure 5: Boom and glove hardware interface to the Virtual Windtunnel

